Aim: Dentine hypersensitivity (DH) is characterized by a short, sharp pain arising from exposed dentin. Most published literature reports on peripheral neural aspects of this pain condition. The current investigation focused on differential cerebral activity elicited by stimulation of sensitive and insensitive teeth by means of natural air stimuli.
Materials and methods: Five graded stimulus strengths were randomly applied by means of a multi-injector air jet delivery system, each followed by an individual rating of perceived stimulus intensity. Brain activity was analysed by functional magnetic resonance imaging (fMRI).
Results: Stimulation of sensitive teeth induced significant activation in the thalamus, somatosensory cortices (SI & SII), anterior, middle and posterior insular cortices, anterior mid cingulate cortex, perigenual anterior cingulate cortex and frontal regions (BA10 and BA46). Differential responses to DH and painless perceptions were observed in the anterior insula and anterior midcingulate cortex.
Conclusion: For the first time, this fMRI study demonstrates the feasibility of investigating cerebral processes related to DH evoked by natural (air) stimuli. Our neuroimaging data additionally provide evidence that differential activity in the anterior Insula (aIC) and anterior midcingulate cortex (aMCC) may represent clinically relevant pain experienced by DH patients.
© 2012 John Wiley & Sons A/S.