Background: Ubiquitin-dependent protein degradation is a critical step in key cell cycle events, such as metaphase-anaphase transition and mitotic exit. The anaphase promoting complex/cyclosome (APC/C) plays a pivotal role in these transitions by recognizing and marking regulatory proteins for proteasomal degradation. Its overall structure and function has been elucidated mostly in yeasts and mammalian cell lines. The APC/C is, however, a multisubunit assembly with at least 13 subunits and their function and interaction within the complex is still relatively uncharacterized, particularly in metazoan systems. Here, lemming (lmg) mutants were used to study the APC/C subunit, Apc11, and its interaction partners in Drosophila melanogaster.
Results: The lmg gene was initially identified through a pharate adult lethal P element insertion mutation expressing developmental abnormalities and widespread apoptosis in larval imaginal discs and pupal abdominal histoblasts. Larval neuroblasts were observed to arrest mitosis in a metaphase-like state with highly condensed, scattered chromosomes and frequent polyploidy. These neuroblasts contain high levels of both cyclin A and cyclin B. The lmg gene was cloned by virtue of the lmg03424 P element insertion which is located in the 5' untranslated region. The lemming locus is transcribed to give a 2.0 kb mRNA that contains two ORFs, lmgA and lmgB. The lmgA ORF codes for a putative protein with more than 80% sequence homology to the APC11 subunit of the human APC/C. The 85 amino acid protein also contains a RING-finger motif characteristic of known APC11 subunits. The lmgA ORF alone was sufficient to rescue the lethal and mitotic phenotypes of the lmg138 null allele and to complement the temperature sensitive lethal phenotype of the APC11-myc9 budding yeast mutant. The LmgA protein interacts with Mr/Apc2, and they together form a binding site for Vihar, the E2-C type ubiquitin conjugating enzyme. Despite being conserved among Drosophila species, the LmgB protein is not required for viability or fertility.
Conclusions: Our work provides insight into the subunit structure of the Drosophila APC/C with implications for its function. Based on the presented data, we suggest that the Lmg/Apc11 subunit recruits the E2-C type ubiquitin conjugating enzyme, Vihar, to the APC/C together with Mr/Apc2 by forming a ternary complex.