Brain morphometry in recent decades has increased our understanding of the neural bases of psychiatric disorders by localizing anatomical disturbances to specific nuclei and subnuclei of the brain. At least some of these disturbances precede the overt expression of clinical symptoms and possibly are endophenotypes that could be used to diagnose an individual accurately as having a specific psychiatric disorder. More accurate diagnoses could significantly reduce the emotional and financial burden of disease by aiding clinicians in implementing appropriate treatments earlier and in tailoring treatment to the individual needs. Several methods, especially those based on machine learning, have been proposed that use anatomical brain measures and gold-standard diagnoses of participants to learn decision rules that classify a person automatically as having one disorder rather than another. We review the general principles and procedures for machine learning, particularly as applied to diagnostic classification, and then review the procedures that have thus far attempted to diagnose psychiatric illnesses automatically using anatomical measures of the brain. We discuss the strengths and limitations of extant procedures and note that the sensitivity and specificity of these procedures in their most successful implementations have approximated 90%. Although these methods have not yet been applied within clinical settings, they provide strong evidence that individual patients can be diagnosed accurately using the spatial pattern of disturbances across the brain.
© 2012 The Authors. Journal of Child Psychology and Psychiatry © 2012 Association for Child and Adolescent Mental Health.