Epithelial morphogenesis of germline-derived pluripotent stem cells on organotypic skin equivalents in vitro

Differentiation. 2012 Mar;83(3):138-47. doi: 10.1016/j.diff.2011.11.014. Epub 2011 Dec 21.

Abstract

For tissue engineering, cultivation of pluripotent stem cells on three-dimensional scaffolds allows the generation of organ-like structures. Previously, we have established an organotypic culture system of skin to induce epidermal differentiation in adult stem cells. Multipotent stem cells are not able to differentiate across germinal boundaries. In contrast, pluripotent stem cells readily differentiate into tissues of all three germ layers. Germline-derived pluripotent stem cells (gPS cells) can be generated by induction of pluripotency in mouse unipotent germline stem cells without the introduction of exogenous transcription factors. In the current study, we analyzed the influence of organotypic culture conditions of skin on the epithelial differentiation of gPS cells in comparison to the well-established HM1 ES cell line. Quantitative RT-PCR data of the pluripotency gene Oct4 showed that gPS cells are characterized by an accelerated Oct4-downregulation compared to HM1 ES cells. When subjected to the organotypic culture conditions of skin, gPS cells formed tubulocystic structures lined by stratified (CK5/6(+), CK14(+), CK8/18(-)) epithelia. HM1 ES cells formed only small tubulocystic structures lined by simple, CK8/18(+) epithelia. BMP-4, an epidermal morphogen, significantly enhanced the expression of epithelial markers in HM1 ES cells, but did not significantly affect the formation of complex (squamous) epithelia in gPS cells. In HM1 ES cells the differentiation into squamous epithelium was only inducible in the presence of mature dermal fibroblasts. Both pluripotent stem cell types spontaneously differentiated into mesodermal, endodermal and into neuroectodermal cells at low frequency, underlining their pluripotent differentiation capacity. Concluding, the organotypic culture conditions of skin induce a multilayered, stratified epithelium in gPS cells, in HM1 ES cells only in the presence of dermal fibroblasts. Thus, our data show that differentiation protocols strongly depend on the stem cell type and have to be modified for each specific stem cell type.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Bone Morphogenetic Protein 4 / genetics
  • Bone Morphogenetic Protein 4 / metabolism
  • Cell Differentiation*
  • Epithelium / growth & development*
  • Fibroblasts / cytology
  • Fibroblasts / metabolism
  • Gene Expression Regulation, Developmental
  • Germ Cells / cytology
  • Germ Cells / growth & development
  • Mice
  • Morphogenesis / genetics*
  • Octamer Transcription Factor-3 / genetics
  • Octamer Transcription Factor-3 / metabolism*
  • Pluripotent Stem Cells / cytology*
  • Skin / cytology
  • Skin / growth & development*
  • Tissue Engineering

Substances

  • Bone Morphogenetic Protein 4
  • Octamer Transcription Factor-3
  • Pou5f1 protein, mouse