Upon the invasion of the host by microorganisms, innate immunity is triggered through pathogen recognition by pattern recognition receptors (PRRs). Toll-like receptors (TLRs) are the best-studied class of PRRs, and they recognize specific pathogen-associated molecular patterns (PAMPs) from various microorganisms. A large number of studies have shown that genetic variation in TLRs may influence susceptibility to infections. We assessed the genetic variation of TLR2, which encodes one of the most important TLRs, in various populations around the globe and correlated it with changes in the function of the molecule. The three best-known nonsynonymous TLR2 polymorphisms (1892C>A, 2029C>T, and 2258G>A) were assessed in different populations from the main continental masses: Romanians, Vlax-Roma, Dutch (European populations), Han Chinese (East Asia), Dogon, Fulani (Africa), and Trio Indians (America). The 2029C>T polymorphism was absent in both European and non-European populations, with the exception of the Vlax-Roma, suggesting that this polymorphism most likely arose in Indo-Aryan people after migration into South Asia. The 1892C>A polymorphism that was found exclusively in European populations, but not in Asian, African, or American volunteers, probably occurred in proto-Indo-Europeans. Interestingly, 2258G>A was present only in Europeans, including Vlax-Roma, but at a very low frequency. The differential pattern of the TLR2 polymorphisms in various populations may explain some of the differences in susceptibility to infections between these populations.