To test the hypothesis that dual-targeting confers the novel ability of selective binding to antigen double-positive over antigen single-positive cells, a single-chain triplebody (sctb), HLA-ds16-hu19, was produced and characterized. The molecule carries three single-chain Fv (scFv) antibody fragments in a single polypeptide chain, the two distal ones specific for the human histocompatibility protein HLA-DR and the B-lymphoid cell surface protein CD19, the central one for CD16, the human low affinity Fc-receptor FcγRIII. For comparison, the bispecific scFvs (bsscFv) hu19-ds16 and HLA-ds16 were also produced. All CD16 binding modules are disulfide-stabilized (ds). The sctb bound simultaneously to both CD19 and HLA-DR on the same cancer cell and, thus, showed functional dual-targeting. In a mixing-experiment with HLA-DR single-positive HUT-78 cells and (HLA-DR plus CD19) double-positive SEM cells, the triplebody showed preferential binding to the double-positive cells, even when the single-positive cells were present in a numerical excess of up to 20-fold. In antibody-dependent cellular cytotoxicity experiments with mononuclear cells as effector cells, the sctb promoted equal lysis of Raji cells, an antigen double-positive cell line, at 130-fold lower concentrations than the bsscFv hu19-ds16, indicating that both distal scFvs of the sctb contributed to tumor cell lysis. A panel of stably-transfected HEK293 cell lines was generated that included CD19- and HLA-DR single-positive and (HLA-DR plus CD19) double-positive lines with antigen-surface densities varying over a broad range. Using a pair of cell lines with matching densities, the sctb eliminated double-positive target cells preferentially single-positive cells. This ability of preferential or selective targeting of antigen double-positive over single-positive cells opens attractive new perspectives for the use of dual-targeting sctbs in cancer therapy.