Attractiveness is a major component of sexual selection that is dependent on sexual characteristics, such as pheromone production, which often reflect an individual's fitness and reproductive potential. Aging is a process that results in a steady decline in survival and reproductive output, yet little is known about its effect on specific aspects of attractiveness. In this report we asked how aging impacts pheromone production and sexual attractiveness in Drosophila melanogaster. Evidence suggests that key pheromones in Drosophila are produced as cuticular hydrocarbons (CHC), whose functions in attracting mates and influencing behavior have been widely studied. We employed gas chromatography/mass spectrometry and laser desorption/ionization mass spectrometry to show that the composition of D. melanogaster CHC is significantly affected by aging in both sexes and that these changes are robust to different genetic backgrounds. Aging affected the relative levels of many individual CHC, and it shifted overall hydrocarbon profiles to favor compounds with longer chain lengths. We also show that the observed aging-related changes in CHC profiles are responsible for a significant reduction in sexual attractiveness. These studies illuminate causal links among pheromones, aging and attractiveness and suggest that CHC production may be an honest indicator of animal health and fertility.