The ability to survive and proliferate in acidic environments is a prerequisite for the infection of Listeria monocytogenes. The glutamate decarboxylase (GAD) system is responsible for acid resistance, and three GAD homologs have been identified in L. monocytogenes: gadD1, gadD2, and gadD3. To examine whether GAD genes are specific to lineage, serovar, or certain subpopulation, we performed a systematic investigation on the prevalence of GAD genes in 164 L. monocytogenes. In contrast to gadD2 and gadD3 conserved in all L. monocytogenes strains, gadD1 was identified in 36.6% (60/164) of L. monocytogenes strains, including all serovar 1/2c and 68.5% (37/54) of serovar 1/2a strains, as well as a small fraction of serovar 1/2b (3.4%, 1/29) and lineage III (13.8%, 4/29) strains. All serovar 4b and lineage IV strains lacked this gene. According to the ascB-dapE structure, L. monocytogenes strains were classified into four subpopulations, carrying inlC2DE, inlGC2DE, inlGHE, or no internalin cluster, respectively. All L. monocytogenes strains with inlGC2DE or inlGHE pattern harbored gadD1, whereas those bearing inlC2DE or no internalin cluster between ascB and dapE lacked gadD1. In addition, other five non-monocytogenes Listeria species lacking ascB-dapE internalin cluster were gadD1-negative. Overall, the presence of gadD1 is not fully dependent on lineages or serovars but correlates with ascB-dapE internalin profiles, suggesting gadD1 might have co-evolved with the ascB-dapE internalin cluster in the primitive L. monocytogenes before divergence of serovars.