Enhanced electrochemical properties of LiFePO4 by Mo-substitution and graphitic carbon-coating via a facile and fast microwave-assisted solid-state reaction

Phys Chem Chem Phys. 2012 Mar 14;14(10):3634-9. doi: 10.1039/c2cp24062a. Epub 2012 Feb 7.

Abstract

A composite cathode material for lithium ion battery applications, Mo-doped LiFePO(4)/C, is obtained through a facile and fast microwave-assisted synthesis method. Rietveld analysis of LiFePO(4)-based structural models using synchrotron X-ray diffraction data shows that Mo-ions substitute onto the Fe sites and displace Fe-ions to the Li sites. Supervalent Mo(6+) doping can act to introduce Li ion vacancies due to the charge compensation effect and therefore facilitate lithium ion diffusion during charging/discharging. Transmission electron microscope images demonstrate that the pure and doped LiFePO(4) nanoparticles were uniformly covered by an approximately 5 nm thin layer of graphitic carbon. Amorphous carbon on the graphitic carbon-coated pure and doped LiFePO(4) particles forms a three-dimensional (3D) conductive carbon network, effectively improving the conductivity of these materials. The combined effects of Mo-doping and the 3D carbon network dramatically enhance the electrochemical performance of these LiFePO(4) cathodes. In particular, Mo-doped LiFePO(4)/C delivers a reversible capacity of 162 mA h g(-1) at a current of 0.5 C and shows enhanced capacity retention compared to that of undoped LiFePO(4)/C. Moreover, the electrode exhibits excellent rate capability, with an associated high discharge capacity and good electrochemical reversibility.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carbon / chemistry*
  • Electric Power Supplies
  • Electrochemistry
  • Iron / chemistry*
  • Lithium / chemistry*
  • Microwaves*
  • Molybdenum / chemistry*
  • Phosphates / chemistry*

Substances

  • LiFePO4
  • Phosphates
  • Carbon
  • Molybdenum
  • Lithium
  • Iron