The morphological symptom of phosphorus deficiency at early stage is similar to the appearance of leaf aging process in preliminary phase, so that visual diagnostics of phosphorus deficiency in mini-cucumber plants at early stage is practically impossible. Near infrared reflectance spectra contain information about differences in compositions of leaf tissues between phosphorus-deficient plants and healthy plants. In the present paper, near infrared reflectance spectroscopy was used to provide diagnostic information on phosphorus deficiency of mini-cucumber plants grown under non-soil conditions. Near infrared spectra was collected from 90 leaves of mini-cucumber plants. Raw cucumber spectra was preprocessed by SNV and divided into 27 intervals. The top 10 principal components (PCs) were extracted as the input of BP-ANN classifiers by principal component analysis (PCA) while the values of nutrient deficient were used as the output variables of BP-ANN and three layers BP-ANN discrimination model was built. The best experiment results were based on the top 3 principal components of No. 7 interval when the spectra was divided into 27 intervals and identification rates of the ANN model are 100% in both training set and the prediction set. The overall results show that NIR spectroscopy combined with BP-ANN can be efficiently utilized for rapid and early diagnostics of phosphorus deficiency in mini-cucumber plants.