Pseudomonas aeruginosa produces as biosurfactants rhamnolipids, containing one (mono-rhamnolipid) or two (di-rhamnolipid) l-rhamnose molecules. The rhamnosyltransferase RhlB catalyses the synthesis of mono-rhamnolipid using as precursors dTDP-l-rhamnose and 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs) produced by RhlA, while the rhamnosyltransferase RhlC synthesizes di-rhamnolipid using mono-rhamnolipid and dTDP-l-rhamnose as substrates. The Las and Rhl quorum-sensing systems coordinately regulate the production of these surfactants, as well as that of other exoproducts involved in bacterial virulence, at the transcriptional level in a cell density-dependent manner. In this work we study the transcriptional regulation of the rmlBDAC operon, encoding the enzymes involved in the production of dTDP-l-rhamnose, the substrate of both rhamnosyltransferases, RhlB and RhlC, and also a component of P. aeruginosa lipopolysaccharide. Here we show that the rmlBDAC operon possesses three promoters. One of these transcriptional start sites (P2) is responsible for most of its expression and is dependent on the stationary phase sigma factor σ(S) and on RhlR/C(4)-HSL through its binding to an atypical 'las box'.