In this paper, we investigate the electric, magnetic, structural, and thermal properties of spinel CoV(2)O(4). The temperature dependence of magnetization shows that, in addition to the paramagnetic-to-ferrimagnetic transition at T(C) = 142 K, two magnetic anomalies exist at 100 K, T(1) = 59 K. Consistent with the anomalies, the thermal conductivity presents two valleys at 100 K and T(1). At the temperature T(1), the heat capacity shows one peak, which cannot be attributed to the structural transition as revealed by the x-ray diffraction patterns for CoV(2)O(4). Below the transition temperature T(1), the ac susceptibility displays the characteristics of a glass. The series of phenomena at T(1) and the orbital state on V(3+) sites are discussed.