Plant-specific dynamin-related proteins play crucial roles in cell-plate formation, endocytosis or exocytosis, protein sorting to the vacuole and plasma membrane and the division of mitochondria and chloroplasts. In order to determine the crystal structure and thus to obtain a better understanding of the biological functions and mechanisms of dynamin-related proteins in plant cells, the GTPase domain of Arabidopsis thaliana dynamin-related protein 1A (AtDRP1A) fused to its GTPase effector domain (GED) was crystallized in a nucleotide-associated form using polyethylene glycol 3350 as precipitant. The hexagonal crystals (space group P6(1)) had unit-cell parameters a = b = 146.2, c = 204.3 Å, and diffraction data were collected to 3.6 Å resolution using synchrotron radiation. Four molecules, comprising two functional dimers, are assumed per asymmetric unit, corresponding to a Matthews coefficient of 3.9 Å(3) Da(-1) according to the molecular weight of 39 kDa.
© 2012 International Union of Crystallography. All rights reserved.