The analysis of amino acids presents significant challenges to contemporary analytical separations. The present paper investigates the possibility of retention prediction in hydrophilic interaction chromatography (HILIC) gradient elution based on the analytical solution of the fundamental equation of the multilinear gradient elution derived for reversed-phase systems. A simple linear dependence of the logarithm of the solute retention (ln k) upon the volume fraction of organic modifier (φ) in a binary aqueous-organic mobile is adopted. Utility of the developed methodology was tested on the separation of a mixture of 21 amino acids carried out with 14 different gradient elution programs (from simple linear to multilinear and curved shaped) using ternary eluents in which a mixture of methanol and water (1:1, v/v) was the strong eluting member and acetonitrile was the weak solvent. Starting from at least two gradient runs, the prediction of solute retention obtained under all the rest gradients was excellent, even when curved gradient profiles were used. Development of such methodologies can be of great interest for a wide range of applications.
Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.