We present a method allowing determination of resting cerebral oxygen metabolism (CMRO₂) from MRI and end-tidal O₂ measurements acquired during a pair of respiratory manipulations producing different combinations of hypercapnia and hyperoxia. The approach is based on a recently introduced generalization of calibrated MRI signal models that is valid for arbitrary combinations of blood flow and oxygenation change. Application of this model to MRI and respiratory data during a predominantly hyperoxic gas manipulation yields a specific functional relationship between the resting BOLD signal M and the resting oxygen extraction fraction OEF₀. Repeating the procedure using a second, primarily hypercapnic, manipulation provides a different functional form of M vs. OEF₀. These two equations can be readily solved for the two unknowns M and OEF₀. The procedure also yields the resting arterial O₂ content, which when multiplied by resting cerebral blood flow provides the total oxygen delivery in absolute physical units. The resultant map of oxygen delivery can be multiplied by the map of OEF₀ to obtain a map of the resting cerebral metabolic rate of oxygen consumption (CMRO₂) in absolute physical units. Application of this procedure in a group of seven human subjects provided average values of 0.35 ± 0.04 and 6.0 ± 0.7% for OEF₀ and M, respectively in gray-matter (M valid for 30 ms echo-time at 3T). Multiplying OEF₀ estimates by the individual values of resting gray-matter CBF (mean 52 ± 5 ml/100 g/min) and the measured arterial O₂ content gave a group average resting CMRO₂ value of 145 ± 30 μmol/100 g/min. The method also allowed the generation of maps depicting resting OEF, BOLD signal, and CMRO₂.
Copyright © 2011 Elsevier Inc. All rights reserved.