Protection by essential metals against the genotoxic effects of toxic elements is an open question. Here, human Hs27 dermal fibroblasts and B-mel melanoblasts were exposed for 10 days to (1 μM) zinc (Zn) or copper (Cu) or selenium (+ 4, Sei; + 6, Sea). Afterwards, cells were exposed for 3 days to subtoxic concentrations of lead (Pb, 100 μM) or vanadium (+ 5, V, 2 μM) or cadmium (Cd, 3 μM), slightly reducing, by themselves, cell proliferation and unaffecting cell viability and apoptosis. Genotoxic damage was evaluated by cytokinesis-block micronucleus assay (CBMN) and single cell gel electrophoresis (Comet assay, CA). CBMN and CA were preliminarly assessed following 3, 10 and 30 days of exposure to the above concentrations of Pb, V and Cd: Pb induced micronuclei (MN) formation in both Hs27 and B-mel cells, without determining direct DNA damage (as shown by CA); V did not reveal genotoxic effects on fibroblasts (as shown by CBMN and CA) but increased the frequency of MN and comets in melanoblasts; Cd induced a great number of MN and comets in fibroblasts but not in melanoblasts; all these effects did not differ after 3, 10 or 30 days of exposure to such elements so that Hs27 and B-mel cells were exposed to Pb,V and Cd for 3 days following pretreatment with (1 μM) Zn, Cu, Sei or Sea. By itself, the 10 day-exposure to (1 μM) Zn, Cu, Sei or Sea did not affect cell proliferation, viability, apoptosis and formation of MN or comets in either Hs27 or B-mel cells. Only Zn significantly reduced the Cd- and V-induced MN and comet formation in fibroblasts and melanoblasts, respectively; in these cells, however, Zn did not affect the Pb-induced MN formation. These results emphasize the role of Zn, in respect to other essential metals, in opposing the genotoxic effects of cancerogenic (Cd) or potentially cancerogenic elements (V).