Recursive segmentation and recognition templates for image parsing

IEEE Trans Pattern Anal Mach Intell. 2012 Feb;34(2):359-71. doi: 10.1109/TPAMI.2011.160.

Abstract

In this paper, we propose a Hierarchical Image Model (HIM) which parses images to perform segmentation and object recognition. The HIM represents the image recursively by segmentation and recognition templates at multiple levels of the hierarchy. This has advantages for representation, inference, and learning. First, the HIM has a coarse-to-fine representation which is capable of capturing long-range dependency and exploiting different levels of contextual information (similar to how natural language models represent sentence structure in terms of hierarchical representations such as verb and noun phrases). Second, the structure of the HIM allows us to design a rapid inference algorithm, based on dynamic programming, which yields the first polynomial time algorithm for image labeling. Third, we learn the HIM efficiently using machine learning methods from a labeled data set. We demonstrate that the HIM is comparable with the state-of-the-art methods by evaluation on the challenging public MSRC and PASCAL VOC 2007 image data sets.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.