To evaluate a potential role of Axl, the high-affinity receptor of growth arrest-specific protein 6 (GAS6) in adiposity, murine embryonic fibroblasts (MEF) derived from mice with genetic deficiency of Axl (Axl(-/-)) or wild-type littermates (Axl(+/+)) were differentiated into mature adipocytes. In addition, Axl(-/-) and Axl(+/+) mice were kept on standard fat diet (SFD) or on high-fat diet (HFD) for 15 weeks. Deficiency of Axl in MEF did not affect differentiation, as shown by a similar uptake of Oil Red O and expression of the adipogenic markers aP2 and peroxisome proliferator activator receptor γ (PPARγ) at the end of the differentiation. In the first 7 weeks of HFD feeding, Axl(-/-) mice gained less weight than their wild-type littermates. Weight gain for both genotypes on either SFD of HFD over 15 weeks was, however, not significantly different, resulting in comparable body weights, as well as subcutaneous (s.c.) and gonadal (GON) fat mass. Adipocyte size in the fat tissues was not affected by Axl deficiency. Gene expression analysis indicated that the absence of Axl in vivo may be compensated for by the other TAM family members Mer and Tyro3. Glucose and insulin tolerance tests (ITT) in Axl(-/-) and Axl(+/+) mice did not reveal significant differences in glucose homeostasis. Thus, Axl deficiency had no significant effect on adipogenesis in vitro or in vivo.