The activated sludge process generates an endogenous residue (X(E)) as a result of heterotrophic biomass decay (X(H)). A literature review yielded limited information on the differences between X(E) and X(H) in terms of chemical composition and content of extracellular polymeric substances (EPS). The objective of this project was to characterize the chemical composition (x, y, z, a, b and c in C(x)H(y)O(z)N(a)P(b)S(c)) of the endogenous and the active fractions and EPS of activated sludge from well designed experiments. To isolate X(H) and X(E) in this study, activated sludge was generated in a 200L pilot-scale aerobic membrane bioreactor (MBR) fed with a soluble and completely biodegradable synthetic influent of sodium acetate as the sole carbon source. This influent, which contained no influent unbiodegradable organic or inorganic particulate matter, allowed the generation of a sludge composed essentially of two fractions: heterotrophic biomass X(H) and an endogenous residue X(E), the nitrifying biomass being negligible. The endogenous decay rate and the active biomass fraction of the MBR sludge were determined in 21-day aerobic digestion batch tests by monitoring the VSS and OUR responses. Fractions of X(H) and X(E) were respectively 68% and 32% in run 1 (MBR at 5.2 day SRT) and 59% and 41% in run 2 (MBR at 10.4 day SRT). The endogenous residue was isolated by subjecting the MBR sludge to prolonged aerobic batch digestion for 3 weeks, and was characterized in terms of (a) elemental analysis for carbon, nitrogen, phosphorus and sulphur; and (b) content of EPS. The MBR sludge was characterized using the same procedures (a and b). Knowing the proportions of X(H) and X(E) in this sludge, it was possible to characterize X(H) by back calculation. Results from this investigation showed that the endogenous residue had a chemical composition different from that of the active biomass with a lower content of inorganic matter (1:4.2), of nitrogen (1:2.9), of phosphorus (1:5.3) and of sulphur (1:3.2) but a similar content of carbon (1:0.98). Based on these elemental analyses, chemical composition formulae for X(H) and X(E) were determined as CH(1.240)O(0.375)N(0.200)P(0.0172)S(0.0070) and CH(1.248)O(0.492)N(0.068)P(0.0032)S(0.0016), respectively. Data from EPS analyses also confirmed this difference in structure between X(E) and X(H) with an EPS content of 11-17% in X(E)versus 26-40% in X(H).
Copyright © 2011 Elsevier Ltd. All rights reserved.