Purpose: Axitinib, an orally administered inhibitor of vascular endothelial growth factor 1, 2 and 3, is primarily metabolized by cytochrome P450 (CYP) 3A4/5 but is also a substrate for CYP1A2, CYP2C19, UDP-glucuronosyltransferase (UGT)1A1 and the drug transporters P-glycoprotein (encoded by the ABCB1 gene) and OATP1B1 (encoded by SLC01B1). The potential contribution of polymorphisms in genes encoding these enzymes and transporters to axitinib pharmacokinetic variability was assessed.
Methods: A fixed effects meta-analysis was performed using data pooled from 11 healthy volunteer clinical pharmacology trials to investigate the potential association between axitinib exposure and major polymorphisms in these genes following a 5-mg dose of axitinib.
Results: Up to 15 variant alleles were evaluated and up to 315 healthy volunteers per polymorphism were assayed. None of the polymorphisms analysed was a statistically significant predictor of axitinib pharmacokinetic variability. Amongst genotypes and inferred phenotypes, CYP2C19 genotype and the ABCB1 (G2677T/A) polymorphism were the closest to statistical significance in influencing axitinib pharmacokinetic variability after multiple-testing adjustment. However, no enzyme or transporter genotype/inferred phenotype contributed >5% to the overall pharmacokinetic variability of axitinib.
Conclusions: No statistically significant associations between the specific polymorphisms analysed and axitinib plasma exposure were observed, suggesting that genotype- or inferred phenotype-based adjustment of axitinib dose in individual subjects is not warranted.