A mechanistic understanding of gene regulatory network dynamics requires quantitative single-cell data of multiple network components in response to well-defined perturbations. Recent advances in the development of fluorescent biomarkers for proteins, detection of RNA and interactions, microfluidic technology, and high-resolution imaging have set the stage for a host of new studies that elucidate the important roles of stochasticity and cell-cell variability in response to external perturbations. In this review, we briefly describe methods for high-resolution visualization and the control of gene expression, along with application of these novel methods to recent studies involving gene networks.
Copyright © 2011 Elsevier Ltd. All rights reserved.