Toll-like receptors (TLRs) are the most important class of innate pattern recognition receptors (PRRs) by which host immune and non-immune cells are able to recognize pathogen-associated molecular patterns (PAMPs). Most mammalian species have 10 to 15 types of TLRs. TLRs are believed to function as homo- or hetero-dimers. TLR2, which plays a crucial role in recognizing PAMPs from Staphylococcus aureus, forms heterodimers with TLR1 or TLR6 and each dimer has a different ligand specificity. Staphylococcal lipoproteins, Panton-Valentine toxin and Phenol Soluble Modulins have been identified as potent TLR2 ligands. Conversely, the ligand function attributed to peptidoglycan and LTA remains controversial. TLR2 uses a MyD88-dependent signaling pathway that results in NF-kB translocation into the nucleus and activation of the expression of pro-inflammatory cytokine genes. Recognition rouses both an inflammatory response, culminating in the phagocytosis of bacteria, and an adaptive immune response, with the presentation of resulting bacterial compounds to T cells. Here, recent advances on the recognition of S. aureus by TLRs are presented and discussed, as well as the new therapeutic opportunities deriving from this new knowledge.