Although the spontaneous brain rhythms of sleep have commanded much recent interest, their detection and analysis remains suboptimal. In this paper, we develop a data-driven Bayesian algorithm for sleep spindle detection on the electroencephalography (EEG). The algorithm exploits the Karhunen-Loève transform and Bayesian hypothesis testing to produce the instantaneous probability of a spindle's presence with maximal resolution. In addition to possessing flexibility, transparency, and scalability, this algorithm could perform at levels superior to standard methods for EEG event detection.
© 2011 IEEE