We investigated the use of partial collimation on a clinical PET scanner by removing septa from conventional 2D collimators. The goal is to improve noise equivalent count-rates (NEC) compared to 2D and 3D scans for clinically relevant activity concentrations. We evaluated two cases: removing half of the septa (2.5D); and removing two-thirds of the septa (2.7D). System performance was first modeled using the SimSET simulation package, and then measured with the NEMA NU2-2001 count-rate cylinder (20 cm dia., 70 cm long), and 27 cm and 35 cm diameter cylinders of the same length. An image quality phantom was also imaged with the 2.7D collimator. SimSET predicted the relative NEC curves very well, as confirmed by measurements, with 2.5D and 2.7D NEC greater than 2D and 3D NEC in the range of ~5-20 mCi in the phantom. We successfully reconstructed images of the image quality phantom from measured 2.7D data using custom 2.7D normalization. Partial collimation shows promise for optimized clinical imaging in a fixed-collimator system.