Mitochondrial dysfunction in familial amyotrophic lateral sclerosis

J Bioenerg Biomembr. 2011 Dec;43(6):587-92. doi: 10.1007/s10863-011-9393-0.

Abstract

A growing body of evidence suggests that mitochondrial dysfunctions play a crucial role in the pathogenesis of various neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS), a neurodegenerative disease affecting both upper and lower motor neurons. Although ALS is predominantly a sporadic disease, approximately 10% of cases are familial. The most frequent familial form is caused by mutations in the gene encoding Cu/Zn superoxide dismutase 1 (SOD1). A dominant toxic gain of function of mutant SOD1 has been considered as the cause of the disease and mitochondria are thought to be key players in the pathogenesis. However, the exact nature of the link between mutant SOD1 and mitochondrial dysfunctions remains to be established. Here, we briefly review the evidence for mitochondrial dysfunctions in familial ALS and discuss a possible link between mutant SOD1 and mitochondrial dysfunction.

Publication types

  • Review

MeSH terms

  • Amyotrophic Lateral Sclerosis / enzymology*
  • Amyotrophic Lateral Sclerosis / genetics
  • Amyotrophic Lateral Sclerosis / pathology
  • Animals
  • Genetic Diseases, Inborn / enzymology*
  • Genetic Diseases, Inborn / genetics
  • Genetic Diseases, Inborn / pathology
  • Humans
  • Mitochondria / enzymology*
  • Mitochondria / genetics
  • Mitochondria / pathology
  • Mutation
  • Superoxide Dismutase / genetics
  • Superoxide Dismutase / metabolism*
  • Superoxide Dismutase-1

Substances

  • SOD1 protein, human
  • Superoxide Dismutase
  • Superoxide Dismutase-1