In this work, hollow mesoporous silica nanoparticles (HMSNs) with three pore sizes were manufactured to control the drug release rate, and the biological roles of these HMSNs were evaluated in multidrug-resistant (MDR) cancer cells. As novel pore-size-controllable inorganic materials, HMSNs showed negligible cytotoxicity and efficient cellular uptake toward drug-sensitive MCF-7 and drug-resistant MCF-7/ADR cells. Doxorubicin (DOX)-loaded HMSNs (DMSNs) not only demonstrated effective drug loading and a pH-responsive drug release character but also exhibited pore-size-dependent and sustained drug release performance in both in vitro and intracellular drug release experiments. In addition, DMSNs exhibited pore-size-dependent anticancer activity against MCF-7/ADR cells. DMSNs with larger pore size could mediate more cellular uptake of DOX and faster intracellular drug release, which led to more intracellular drug accumulation and stronger MDR-reversal effects. The MDR-overcoming mechanism could be due to the efficient cellular uptake, P-gp inhibition, and ATP depletion. These results demonstrate that HMSNs could be a very promising drug delivery system for pore-size-controllable drug release and cancer MDR reversion.