Background: The risk of pulmonary vein narrowing (PVN) after pulmonary vein isolation, using a novel multi-electrode ablation catheter, is unknown.
Methods and results: Left atrial volume and PV diameters were compared by computed tomography (CT) before and 3 months after pulmonary vein isolation using duty-cycled phased radio frequency energy (2:1 or 4:1 bipolar/unipolar ratio) in 50 patients. Pulmonary vein diameter was measured in a coronal and axial view at 3 levels (A, ostium; B, 1 cm more distal; C, 2 cm more distal). Moderate PVN was defined as a pulmonary vein diameter reduction of 25 to 50%, and severe PVN as >50%. Left atrial volume decreased by 12±12% (P<0.01). Axial pulmonary vein diameter shortened by a median of 16% (interquartile range [IQR] 28 to 5%), 13% (IQR 25 to 5%), and 9% (IQR 21 to -3%) at level A, B, and C, respectively (P<0.01 for all); coronal pulmonary vein diameter decreased by a median of 16% (IQR 24 to 7%), 11% (IQR 21 to 4%), and 8% (IQR 18 to -2%; P<0.01 for all). Moderate PVN occurred in 30% of the PVs, in 78% of the patients; severe PVN occurred in 4% of the PVs, in 15% of the patients. PV diameter reduction was not related to changes in left atrial volume.
Conclusions: Isolation of the pulmonary veins using a multielectrode ablation catheter and duty cycled phased radiofrequency energy delivery results in a consistent moderate reduction of the PV diameters predominantly at the ostium. Severe PVN in 15% of patients raises concerns about the risk for clinical PV stenosis.