The second-order nonlinear optical (NLO) properties of the Cp*Co(C(2)H(5))(2)C(2)B(4)H(3)-expanded (metallo)porphyrins (Cp* = C(5)Me(5)) have been investigated by using ab inito RHF and density functional theory (DFT) methods. The investigation shows that the compound with expand porphyrin possesses remarkable large molecular hyperpolarizability β(tot) value, ~414.1 × 10(-30) esu (at LC-ωPBE level), and might be an excellent second-order NLO material. From the character of charge transfer (CT) transition, it indicates that the -Cp*Co(C(2)H(5))(2)C(2)B(4)H(3) acts as an electron donor in this kind of systems. As a result of the redox behavior on expanded (metallo)porphyrin, the redox switching character of the NLO responses for the systems 2a-4a has also been studied. The results show that the β(tot) values of reduced forms are larger than that of neutral ones. Furthermore, the time-dependent DFT calculation illustrates that reduced forms have a significant difference on the CT patterns versus neutral ones. The present investigation provides insight into the comparison with DFT results on estimating first hyperpolarizability and the NLO properties of the series of push-pull compounds.
Copyright © 2011 Wiley Periodicals, Inc.