A biodegradable electroactive hydrogel (AP-g-GA), aniline pentamer (AP) grafting gelatin (GA), is synthesized by a coupling reaction between the carboxyl group of AP and the amino side group of GA in aqueous solution. The electroactivity of the physical hydrogel is confirmed by UV-vis and CV. The hydrophobic AP changes the hydrogel's porous structure of the natural GA and the gel-time, which is confirmed by the rheological behavior of the AP-g-GA and GA. With an increase in the content of AP, the hydrogel gradually forms a porous structure, from "honeycomb" to "bamboo raft". The porous scaffolds can be crosslinked with 3.5% EDC in 90% ethanol. MTT assays show that the AP-g-GA exhibits reduced cytotoxicity compared to EM AP due to the introduction of the biocompatible GA moiety. The in vitro cell cultures suggest that the AP-g-GA#1 (with 1.9% AP) shows the best biocompatibility and cell adhesion ability.
Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.