Kallikrein-related peptidase 14 (KLK14) is a member of the tissue kallikrein family of proteases, which are associated with the pathogenesis of malignant tumors and are over-expressed in ovarian carcinoma. However, the mechanism through which KLK14 is implicated in ovarian cancer remains unclear. The aim of the present study was to investigate the effects of KLK14 gene inhibition by small interfering RNA (siRNA) on the growth, apoptosis and invasion of ovarian carcinoma cells in vitro. KLK14 siRNA was transiently transfected into SK-OV-3 and OVCAR-3 ovarian carcinoma cells for 48 h. The expression of KLK14 was determined by reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis. Cell proliferation, apoptosis and invasion were examined by MTT, flow cytometry and Matrigel assay, respectively. The expression of survivin, caspase 9, cleaved caspase 3 and MMP2 protein was measured by Western blot analysis. The expression of KLK14 was significantly downregulated by siRNA in SK-OV-3 and OVCAR-3 cells at both the mRNA and protein levels. Following transfection with KLK14 siRNA, cell growth and invasion were significantly suppressed, and cell apoptosis was markedly induced. The expression of survivin and MMP2 was decreased, while the espression of caspase 9 and cleaved caspase 3 was increased. These results indicate that KLK14 is implicated in the malignant behavior of ovarian carcinoma cells in vitro, and that KLK14 may serve as a target for therapy of ovarian carcinoma.