The cell of origin of tumors and the factors determining the cell of origin remain unclear. In this study, a mouse model of precursor B acute lymphoblastic leukemia/lymphoma (pre-B ALL/LBL) was established by retroviral transduction of Myc genes (N-Myc or c-Myc) into mouse bone marrow cells. Hematopoietic stem cells (HSCs) exhibited the highest susceptibility to N-Myc-induced pre-B ALL/LBL versus lymphoid progenitors, myeloid progenitors and committed progenitor B cells. N-Myc was able to induce pre-B ALL/LBL directly from progenitor B cells in the absence of Ink4a and Arf. Arf was expressed higher in progenitor B cells than Ink4a. In addition, N-Myc induced pre-B ALL/LBL from Arf(-/-) progenitor B cells suggesting that Arf has a predominant role in determining the cell of origin of pre-B ALL/LBL. Tumor cells derived from Ink4a/Arf(-/-) progenitor B cells exhibited a higher rate of proliferation and were more chemoresistant than those derived from wild-type HSCs. Furthermore, the Mdm2 inhibitor Nutlin-3 restored p53 and induced massive apoptosis in mouse pre-B ALL/LBL cells derived from Ink4a/Arf(-/-) cells and human B-ALL cell lines lacking Ink4a and Arf expression, suggesting that Mdm2 inhibition may be a novel therapeutic approach to the treatment of Ink4a/Arf(-/-) B-ALL/LBL, such as is frequently found in Ph(+) ALL and relapsed ALL. Collectively, these findings indicate that Ink4a and Arf are critical determining factors of the cell of origin and the therapeutic sensitivity of Myc-induced lymphoid tumors.