Lipid rafts are cholesterol- and sphingolipid-rich membrane microdomains that have been shown to participate in the entry, assembly and budding of various viruses. However, their involvement in HBV replication remains poorly characterized. In a preliminary study, we observed that HBV release could be markedly impaired by methyl-β-cyclodextrin mediated depletion of cholesterol in lipid rafts, and that this effect could be reversed by replenishment of exogenous cholesterol, suggesting that lipid rafts play an important role in the HBV life cycle. To further understanding how HBV exploited host cell lipid rafts to benefit replication, comprehensive proteomic approaches were used to profile the proteome changes of host cell lipid rafts in response to HBV infection using 2DE-MS/MS, in combination with SILAC-based quantitative proteomics. Using these approaches, a total of 97 differentially expressed proteins were identified. Bioinformatics analysis suggested that multiple host cell pathways were involved in the HBV infection processes including signal transduction, metabolism, immune response, transport, vesicle trafficking, cell adhesion and cellular ion homeostasis. These data will provide valuable clues for further investigation of HBV pathogenesis.
Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.