We report a robust method for synthesis of monodisperse PbSeTe single ternary alloy and core/shell heterostructured nanocubes, respectively. The key synthetic strategy to produce such different classes of nanocubes is to precisely control the time of reaction and successive growth. The crystallinity, shape/size distributions, structural characteristics, and compositions of as-prepared nanocubes, both ternary alloy and core/shell, were carefully studied. A plausible growth mechanism for developing each type of lead chalcogenide nanocubes is proposed. These delicately designed PbSeTe nanoscale architectures offer tunable compositions in PbSeTe ternary alloy and nano-interfaces in core/shell nanocubes, which are the critical factors in controlling thermal conductivity for applications in thermoelectrics.