Model-based elastography is an emerging technique with clinical applications in imaging vascular tissues, guiding minimally invasive therapies and diagnosing breast and prostate cancers. Its usage is limited because ultrasound can measure only the axial component of displacement with high precision. The goal of this study was to assess the effect of lateral sampling frequency, lateral beam-width and the number of active transmission elements on the quality of axial and lateral strain elastograms. Elastographic imaging was performed on gelatin-based phantoms with a modified commercial ultrasound scanner. Three groups of radio-frequency (RF) echo frames were reconstructed from fully synthetic aperture data. In the first group, all 128 transmission elements (corresponding to a lateral beamwidth of 0.22 mm at the center of the field of view) were used to reconstruct RF echo frames with A-line densities that varied from 6.4 lines/mm to 51.2 lines/mm. In the second group, the size of the aperture was varied to produce RF echo frames with lateral beamwidths ranging from 0.22 mm to 0.43 mm and a fixed A-line density of 25.6 lines/mm. In the third group, sparse arrays with varying number of active transmission elements (from 2 to 128) were used to reconstruct RF echo frames, whose A-line density and lateral beamwidth were fixed to 25.6 lines/mm and 0.22 mm, respectively. Applying a two-dimensional (2-D) displacement estimator to the pre- and post-deformed RF echo frames produced displacement elastograms. Axial and lateral strain elastograms were computed from displacement elastograms with a least squares strain estimator. The quality of axial and lateral strain elastograms improved with increasing applied strain and A-line density but decreased with increasing lateral beamwidth and deteriorated as the number of active transmission elements in the sparse arrays were reduced. This work demonstrated that the variance incurred when estimating the lateral component of displacement was reduced considerably when elastography was performed with a synthetic aperture ultrasound imaging system. Satisfactory axial and lateral strain elastograms were produced using a sparse array with as few as 16 active transmission elements.
Published by Elsevier Inc.