MoS(2) nanoplates, consisting of disordered graphene-like layers, with a thickness of ∼30 nm were prepared by a simple, scalable, one-pot reaction using Mo(CO)(6) and S in an autoclave. The product has a interlayer distance of 0.69 nm, which is much larger than its bulk counterpart (0.62 nm). This expanded interlater distance and disordered graphene-like morphology led to an excellent rate capability even at a 50C (53.1 A/g) rate, showing a reversible capacity of 700 mAh/g. In addition, a full cell (LiCoO(2)/MoS(2)) test result also demonstrates excellent capacity retention up to 60 cycles.