Purpose: To present the application of a new sensor based on a flexible, highly piezoresistive, nanocomposite, all-organic bilayer (BL) adapted to a contact lens (CL) for non-invasive monitoring intraocular pressure (IOP).
Methods: A prototype of a sensing CL, adapted to a pig eyeball, was tested on different enucleated pig eyes. A rigid, gas-permeable CL was designed as a doughnut shape with a 3-mm hole, where the BL film-based sensor was incorporated. The sensor was a polycarbonate film coated with a polycrystalline layer of the highly piezoresistive molecular conductor β-(ET)₂I₃, which can detect deformations caused by pressure changes of 1 mm Hg. The pig eyeballs were subjected to controlled-pressure variations (low-pressure transducer) to register the electrical resistance response of the CL sensor to pressure changes. Similarly, a CL sensor was designed according to the anatomic characteristics of the eye of a volunteer on the research team.
Results: A good correlation (r² = 0.99) was demonstrated between the sensing CL electrical response, and IOP (mm Hg) changes in pig eyes, with a sensitivity of 0.4 Ω/mm Hg. A human eye test also showed the high potential of this new sensor (IOP variations caused by eye massage, blinking, and eye movements were registered).
Conclusions: A new nanostructured sensing CL for continuous monitoring of IOP was validated in an in vitro model (porcine eyeball) and in a human eye. This prototype has adequate sensitivity to continuously monitor IOP. This device will be useful for glaucoma diagnosis and treatment.