Nerve root compression is a common cause of radiculopathy and induces persistent pain. Mammalian fibrin is used clinically as a coagulant but presents a variety of risks. Fish fibrin is a potential biomaterial for neural injury treatment because it promotes neurite outgrowth, is non-toxic, and clots readily at lower temperatures. This study administered salmon fibrin and thrombin following nerve root compression and measured behavioral sensitivity and glial activation in a rat pain model. Fibrin and thrombin each significantly reduced mechanical allodynia compared to injury alone (p < 0.02). Painful compression with fibrin exhibited allodynia that was not different from sham for any day using stimulation by a 2 g filament; allodynia was only significantly different (p < 0.043) from sham using the 4 g filament on days 1 and 3. By day 5, responses for fibrin treatment decreased to sham levels. Allodynia following compression with thrombin treatment were unchanged from sham at any time point. Macrophage infiltration at the nerve root and spinal microglial activation were only mildly modified by salmon treatments. Spinal astrocytic expression decreased significantly with fibrin (p < 0.0001) but was unchanged from injury responses for thrombin treatment. Results suggest that salmon fibrin and thrombin may be suitable biomaterials to mitigate pain.
Copyright © 2011 Elsevier Ltd. All rights reserved.