Perfluorocarbon attenuates lipopolysaccharide-mediated inflammatory responses of alveolar epithelial cells in vitro

Chin Med J (Engl). 2011 Aug;124(16):2534-9.

Abstract

Background: Toll-like receptor-4 (TLR-4) is integrally involved in lipopolysaccharide (LPS) signaling and has a requisite role in the activation of nuclear factor-κB (NF-κB). The exact mechanisms that lend perfluorocarbon (PFC) liquids a cytoprotective effect have yet to be elucidated. Therefore we examined in an in vitro model the cytoprotective effect of PFC on LPS-stimulated alveolar epithelial cellls (AECs).

Methods: AECs (A549 cells, human lung adenocarcinoma cell line) were divided into four groups: control, PFC, LPS and LPS + PFC (coculture group) groups. Intercellular adhesion molecule-1 (ICAM-1) was detected by ELISA, tumor necrosis factor-α (TNF-α) and interleukin-8 (IL-8) were detected by radioimmunological methods. The expression of TLR-4 mRNA and protein was detected by real time PCR and Western blotting, respectively. The activation of NF-κB was detected by Western blotting (proteins of I-κBa and NF-κB p65).

Results: ICAM-1, TNF-α and IL-8 were significantly increased in LPS-stimulated AECs groups. The expression of TLR-4 mRNA and protein in LPS-stimulated groups was markedly increased. Meanwhile, NF-κB was activated as indicated by the significant degradation of IκB-α and the significant release of NF-κB P65 and its subsequent translocation into the nucleus. There were no significant effects of PFC alone on any of the factors studied while the coculture group showed significant downregulation of the secretion of ICAM-1, TNF-α and IL-8, the expression of TLR-4 mRNA and the activity of NF-κB.

Conclusions: Taken together, our results demonstrate that LPS can induce AEC-related inflammatory injury via the activation of TLR-4 and subsequent activation of NF-κB. PFC is able to protect AECs from LPS-induced inflammatory injury by blocking the initiation of the LPS signaling pathway, which is indicated by the significant decrease of TLR-4 expression and NF-κB activation.

MeSH terms

  • Blotting, Western
  • Cell Line, Tumor
  • Epithelial Cells / drug effects*
  • Epithelial Cells / immunology*
  • Fluorocarbons / pharmacology*
  • Humans
  • Inflammation / chemically induced
  • Inflammation / immunology*
  • Intercellular Adhesion Molecule-1 / genetics
  • Intercellular Adhesion Molecule-1 / metabolism
  • Interleukin-8 / genetics
  • Interleukin-8 / metabolism
  • Lipopolysaccharides / pharmacology*
  • NF-kappa B / genetics
  • NF-kappa B / metabolism
  • Pulmonary Alveoli / cytology*
  • Real-Time Polymerase Chain Reaction
  • Toll-Like Receptor 4 / genetics
  • Toll-Like Receptor 4 / metabolism
  • Tumor Necrosis Factor-alpha / genetics
  • Tumor Necrosis Factor-alpha / metabolism

Substances

  • Fluorocarbons
  • Interleukin-8
  • Lipopolysaccharides
  • NF-kappa B
  • Toll-Like Receptor 4
  • Tumor Necrosis Factor-alpha
  • Intercellular Adhesion Molecule-1