ABERRANT PANICLE ORGANIZATION 2/RFL, the rice ortholog of Arabidopsis LEAFY, suppresses the transition from inflorescence meristem to floral meristem through interaction with APO1

Plant J. 2012 Jan;69(1):168-80. doi: 10.1111/j.1365-313X.2011.04781.x. Epub 2011 Oct 25.

Abstract

The temporal and spatial control of meristem identity is a key element in plant development. To better understand the molecular mechanisms that regulate inflorescence and flower architecture, we characterized the rice aberrant panicle organization 2 (apo2) mutant which exhibits small panicles with reduced number of primary branches due to the precocious formation of spikelet meristems. The apo2 mutants also display a shortened plastochron in the vegetative phase, late flowering, aberrant floral organ identities and loss of floral meristem determinacy. Map-based cloning revealed that APO2 is identical to previously reported RFL gene, the rice ortholog of the Arabidopsis LEAFY (LFY) gene. Further analysis indicated that APO2/RFL and APO1, the rice ortholog of Arabidopsis UNUSUAL FLORAL ORGANS, act cooperatively to control inflorescence and flower development. The present study revealed functional differences between APO2/RFL and LFY. In particular, APO2/RFL and LFY act oppositely on inflorescence development. Therefore, the genetic mechanisms for controlling inflorescence architecture have evolutionarily diverged between rice (monocots) and Arabidopsis (eudicots).

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Arabidopsis Proteins / metabolism*
  • Cloning, Molecular
  • Flowers / genetics
  • Flowers / growth & development
  • Gene Expression Regulation, Plant
  • Inflorescence
  • Meristem / genetics*
  • Meristem / growth & development*
  • Mutation
  • Oryza / genetics
  • Oryza / growth & development*
  • Oryza / metabolism
  • Plant Proteins / genetics
  • Plant Proteins / metabolism*
  • Plants, Genetically Modified
  • Transcription Factors / metabolism*

Substances

  • Arabidopsis Proteins
  • LFY protein, Arabidopsis
  • Plant Proteins
  • Transcription Factors