Leishmania major parasite stage-dependent host cell invasion and immune evasion

FASEB J. 2012 Jan;26(1):29-39. doi: 10.1096/fj.11-184895. Epub 2011 Sep 9.

Abstract

Leishmania pathogenesis is primarily studied using the disease-inducing promastigote stage of Leishmania major. Despite many efforts, all attempts so far have failed to culture the disease-relevant multiplying amastigote stage of L. major. Here, we established a stably growing axenic L. major amastigote culture system that was characterized genetically, morphologically, and by stage-specific DsRed protein expression. We found parasite stage-specific disease development in resistant C57BL/6 mice. Human neutrophils, as first host cells for promastigotes, do not take up amastigotes. In human macrophages, we observed an amastigote-specific complement receptor 3-mediated, endocytotic entry mechanism, whereas promastigotes are taken up by complement receptor 1-mediated phagocytosis. Promastigote infection of macrophages induced the inflammatory mediators TNF, CCL3, and CCL4, whereas amastigote infection was silent and resulted in significantly increased parasite numbers: from 7.1 ± 1.4 (after 3 h) to 20.1 ± 7.9 parasites/cell (after 96 h). Our study identifies Leishmania stage-specific disease development, host cell preference, entry mechanism, and immune evasion. Since the amastigote stage is the disease-propagating form found in the infected mammalian host, the newly developed L. major axenic cultures will serve as an important tool in better understanding the amastigote-driven immune response in leishmaniasis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Axenic Culture / methods
  • Endocytosis / immunology
  • Female
  • Gene Expression / physiology
  • Host-Parasite Interactions / immunology
  • Humans
  • Leishmania major / genetics
  • Leishmania major / growth & development
  • Leishmania major / immunology*
  • Leishmaniasis, Cutaneous / immunology*
  • Leishmaniasis, Cutaneous / parasitology*
  • Macrophages / immunology
  • Macrophages / parasitology*
  • Macrophages / ultrastructure
  • Mice
  • Mice, Inbred BALB C
  • Mice, Inbred C57BL
  • Microscopy, Electron, Scanning
  • Neutrophils / immunology
  • Neutrophils / parasitology*
  • Neutrophils / ultrastructure
  • Phagocytosis / immunology