On-column solvent exchange, using many of the principles of solid-phase extraction, has been implemented to significantly reduce evaporation cycle time following reverse-phase preparative HPLC. Additional benefits, such as a reduced potential for salt formation, thermal decomposition, and residual solvent, are also described. Fractions obtained from preparative separations, typically in a large volume of acetonitrile:water, are injected into the preparative HPLC and then eluted in acetonitrile, creating a new fraction in a volatile organic solvent. Minimal modification to the instrument was required, and unattended operation is possible. Acetonitrile evaporation is achieved within 3 h, compared with 17 h for aqueous-based fractions; lower temperatures can be used during the evaporation step; mobile-phase additives, likely to form salts with the target compound if concentrated in the fraction, are removed before evaporation; sample recovery and purity are unaffected.
Copyright © 2011 Society for Laboratory Automation and Screening. Published by Elsevier Inc. All rights reserved.