Construction of energy landscapes can clarify the movement and distribution of foraging animals

Proc Biol Sci. 2012 Mar 7;279(1730):975-80. doi: 10.1098/rspb.2011.1544. Epub 2011 Sep 7.

Abstract

Variation in the physical characteristics of the environment should impact the movement energetics of animals. Although cognizance of this may help interpret movement ecology, determination of the landscape-dependent energy expenditure of wild animals is problematic. We used accelerometers in animal-attached tags to derive energy expenditure in 54 free-living imperial cormorants Phalacrocorax atriceps and construct an energy landscape of the area around a breeding colony. Examination of the space use of a further 74 birds over 4 years showed that foraging areas selected varied considerably in distance from the colony and water depth, but were characterized by minimal power requirements compared with other areas in the available landscape. This accords with classic optimal foraging concepts, which state that animals should maximize net energy gain by minimizing costs where possible and show how deriving energy landscapes can help understand how and why animals distribute themselves in space.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Argentina
  • Birds / physiology*
  • Diving
  • Energy Metabolism*
  • Feeding Behavior*
  • Homing Behavior
  • Population Density
  • Population Dynamics