Quantitative analysis of PD 0332991 in mouse plasma using automated micro-sample processing and microbore liquid chromatography coupled with tandem mass spectrometry

J Chromatogr B Analyt Technol Biomed Life Sci. 2011 Oct 1;879(27):2860-5. doi: 10.1016/j.jchromb.2011.08.009. Epub 2011 Aug 16.

Abstract

In the oncology therapeutic area, the mouse is the primary animal model used for efficacy studies. Often with mouse pharmacokinetic (PK) and pharmacokinetic/pharmacodynamic (PK/PD) studies, less than 20 μL of total plasma sample volume is available for bioanalysis due to the small size of the animal and the need to split samples for other measurements such as biomarker analyses. The need to conduct automated "small volume" sample processing for quantitative bioanalysis has therefore increased. An automated fit for purpose protein precipitation (PPT) method using a Hamilton MicroLab Star (Reno, NV, USA) to support mouse PK and PK/PD studies for an oncology drug candidate PD 0332991, (a specific inhibitor of cyclin-dependent kinase 4 (CDK-4) currently in development) for processing "small volumes" was developed. The automated PPT method was achieved by extracting and processing 10 μL out of a minimum sample volume of 15 μL plasma utilizing the Hamilton MicroLab Star. A 96-conical shallow well plate by Agilent Technologies, Inc (Wilmington, DE, USA) was the labware of choice used in the automated Hamilton "small volume" method platform. Analyses of a 10 μL plasma aliquot from 15 μL of plasma study samples were conducted by both automated and manual PPT method. All plasma samples were quantitated using a Sciex API 4000 triple quadrupole mass spectrometer coupled with an Eksigent Express HT Ultra HPLC system. The chromatography was achieved using an Agilent microbore C(18) Extend, 1.0 × 50 mm, 3.5 μm column at a flow rate of 0.150 mL/min with a total run time of 1.8 min. Accuracy and precision of standard and QC concentration levels were within 90-107% and <14%, respectively. Calibration curves were linear over the dynamic range of 1.0-1000 ng/mL. PK studies for PD 0332991 were conducted in female C3H mice following intravenous administration at 1mg/kg and oral administration at 2mg/kg. PK values such as area under curve (AUC), volume of distribution (Vd), clearance (Cl), half life (T(1/2)) and bioavailability (F%) demonstrated less than 11% difference between the automated Hamilton and manual PPT methods. The results demonstrate that the automated Hamilton PPT method can accurately and precisely aliquot 10 μL of plasma from 15 μL or larger volume plasma samples. The fit for purpose Hamilton PPT method is suitable for routine analyses of plasma samples from micro-sampling PK and PK/PD samples to support discovery studies.

MeSH terms

  • Animals
  • Area Under Curve
  • Chromatography, Liquid / instrumentation*
  • Chromatography, Liquid / methods*
  • Female
  • Linear Models
  • Mice
  • Mice, Inbred C3H
  • Piperazines / administration & dosage
  • Piperazines / blood*
  • Piperazines / pharmacokinetics
  • Pyridines / administration & dosage
  • Pyridines / blood*
  • Pyridines / pharmacokinetics
  • Reproducibility of Results
  • Robotics / instrumentation*
  • Tandem Mass Spectrometry / methods*

Substances

  • Piperazines
  • Pyridines
  • palbociclib