The aim of this study was to investigate the characteristics and oxidative stability of chitosan-glutathione conjugate (CS-GSH) and CS-GSH nanoparticles (CS-GSH NPs) to explore the potentials of these nanoparticle systems for GSH delivery. CS-GSH was synthesized using a radical polymerization method, and CS-GSH NP was prepared by ionic gelation of CS-GSH with sodium tripolyphosphate (TPP). The sizes of CS-GSH NPs significantly increased with increasing CS-GSH concentration and CS-GSH/TPP ratio. The entrapment efficiency (EE) significantly increased with increasing CS-GSH concentration and significantly decreased with increasing CS-GSH/TPP ratio. The immobilized GSH could be protected against oxidation compared to free GSH. The thiol content in the nanoencapsulated GSH was more effectively maintained than those in free GSH and CS-GSH, regardless of the presence of oxidative stress-inducing agents. These results suggest that CS-GSH NP can be used to enhance the oxidative stability of GSH.