Background: Fibrin sealant is a human blood product consisting of two components: cryoprecipitate and thrombin. Commercial fibrin sealants are produced from multidonors, increasing the viral risk, and contain fibrinolytic inhibitors such as tranexamic acid or bovine aprotinin. Autologous fibrin sealants reduce the viral risk and are mostly produced during a surgical procedure or well in advance. Alternatively, the allogeneic single-donor fibrin sealant cryoseal can be used. In this study cryoseal was characterized and the manufacturing consistency of the production process was investigated.
Study design and methods: Cryoseal was produced from plasma collected on apheresis machines using a commercial device. In a research setting the protein composition and recovery were determined. Also, the manufacturing consistency of the production process was tested in a research setting as well as in a routine setting.
Results: In the research setting all produced cryoseal met the quality control requirements of a clotting time of less than 10 seconds and the presence of Factor (F)XIII (qualitative). In the routine setting, one procedure per year did not meet these requirements. The protein composition showed the following mean ± standard deviation (%recovery) results: thrombin 25.7 ± 11.1 IU/mL, fibrinogen 19.9 ± 4.6 (15%) mg/mL, FVIII 15.6 ± 5.4 (44%) IU/mL, FXIII 2.7 ± 0.7 (6%) IU/mL, and plasminogen 1.8 ± 0.2 (4%) U/mL. In both research and routine settings the production process resulted in a consistent product.
Conclusion: The cryoseal manufacturing process resulted in a consistent product, which meets the predetermined specifications. The single-donor origin and the absence of fibrinolytic inhibitors make cryoseal a good alternative for multidonor and autologous fibrin sealants.
© 2011 American Association of Blood Banks.