Spin-based electronics in topological insulators (TIs) is favored by the long spin coherence(1,2) and consequently fault-tolerant information storage. Magnetically doped TIs are ferromagnetic up to 13 K,(3) well below any practical operating condition. Here we demonstrate that the long-range ferromagnetism at ambient temperature can be induced in Bi(2-x)Mn(x)Te(3) by the magnetic proximity effect through deposited Fe overlayer. This result opens a new path to interface-controlled ferromagnetism in TI-based spintronic devices.