Background: The objective of this was to identify functional single nucleotide polymorphisms (SNPs) in cyclin-dependent kinases (CDKs) and cyclins that are associated with risk of human cancer.
Methods: First, 45 SNPs in CDKs and cyclins were analyzed in 106 lung cancers and 108 controls for a pilot study. One SNP (reference SNP [rs] 769236, +1 guanine to adenine [G→A]) at the promoter region of cyclin A2 (CCNA2) also was analyzed in 1989 cancers (300 breast cancers, 450 colorectal cancers, 450 gastric cancers, 367 hepatocellular carcinomas, and 422 lung cancers) and in 1096 controls. Genotyping was performed using matrix-assisted laser desorption-ionization/time-of-flight mass spectrometry. Transcriptional activity of the SNP according to the cell cycle was analyzed by using a luciferase reporter assay and fluorescence-activated cell sorting analysis in NIH3T3 cells.
Results: In the pilot study, the SNP (rs769236) was associated significantly with the risk of lung cancer. In the expanded study, multivariate logistic regression indicated that the AA homozygous variant of the SNP was associated significantly with the development of lung cancer (P < .0001; codominant model), colorectal cancer (P < .0001), and hepatocellular carcinoma (P = .02) but not with breast cancer or gastric cancer. The luciferase activity of a 300-base pair construct that contained the A allele was 1.5-fold greater than the activity of a construct with the G allele in NIH3T3 cells. The high luciferase activity of constructs that contained the A allele did not change with cell cycle progression.
Conclusions: The current results suggested that an SNP (rs769236) at the promoter of CCNA2 may be associated significantly with increased risk of colon, liver, and lung cancers.
Cancer 2011 © 2011 American Cancer Society.