Tailored excitation in 3D with spiral nonselective (SPINS) RF pulses

Magn Reson Med. 2012 May;67(5):1303-15. doi: 10.1002/mrm.23118. Epub 2011 Aug 12.

Abstract

Brain images acquired at 3T often display central brightening with spatially varying tissue contrast, caused by inhomogeneity in the transmit radiofrequency fields used for excitation. Tailored radiofrequency pulses can provide mitigation of radiofrequency field inhomogeneity, but previous designs have been unsuitable for 3D imaging in rapid pulse sequences. This article presents a nonselective pulse design based on a short (1 ms) 3D spiral k-space trajectory that covers low spatial frequencies. The resulting excitations are optimized to produce a uniform excitation within a specified volume of interest covering the whole brain. B1 mapping and pulse calculation times were reduced by optimizing in only five slices within the brain. The method has been tested with both single and parallel transmission: in phantom experiments, normalized root-mean-square error in excitation was 0.022 for single and 0.020 for parallel transmission. The corresponding results in vivo were 0.066 and 0.055 respectively. A pilot brain imaging study using the proposed pulses for excitation within the Alzheimer's disease neuroimaging initiative magnetization prepared rapid gradient echo (MP-RAGE) protocol, yielded excellent image quality with improved signal to noise ratio in peripheral brain regions and enhanced uniformity of contrast compared with standard excitation. Greatest performance enhancement was achieved using parallel transmission, but single channel transmission offers significant improvement over standard excitation pulses.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms*
  • Brain / anatomy & histology*
  • Humans
  • Image Enhancement / methods*
  • Image Interpretation, Computer-Assisted / methods*
  • Imaging, Three-Dimensional / methods*
  • Magnetic Resonance Imaging / methods*
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Signal Processing, Computer-Assisted*