Supramolecular hybrid of gold nanoparticles and semiconducting single-walled carbon nanotubes wrapped by a porphyrin-fluorene copolymer

J Am Chem Soc. 2011 Sep 21;133(37):14771-7. doi: 10.1021/ja2055885. Epub 2011 Aug 25.

Abstract

We describe the design, synthesis, and characterization of a supramolecular hybrid of gold nanometals and semiconducting single-walled carbon nanotubes (SWNTs) wrapped by a porphyrin-fluorene copolymer (1), as well as fabrication of a thin-film transistor (TFT) device using the hybrid. Photoluminescence mapping revealed that the copolymer selectively dissolved SWNTs with chirality indices of (8,6), (8,7), (9,7), (7,6), and (7,5); dissolution of (8,6), and (8,7) SWNTs was especially efficient. The solubilized SWNTs were connected to gold nanoparticles (AuNPs) via a coordination bond to prepare a supramolecular hybrid composed of AuNPs/copolymer 1-wrapped SWNTs, which were studied by atomic force and scanning and transmission electron microscopies. A fabricated TFT device using the semiconducting SWNTs/copolymer 1 shows evident p-type transport with an On/Off ratio of ~10(5). The transport properties of the TFT changed after coordination of the AuNPs with the SWNTs/copolymer 1.