Sequence effects in the melting and renaturation of short DNA oligonucleotides: structure and mechanistic pathways

J Phys Condens Matter. 2009 Jan 21;21(3):034105. doi: 10.1088/0953-8984/21/3/034105. Epub 2008 Dec 17.

Abstract

The renaturation/denaturation of DNA oligonucleotides is characterized in the context of expanded ensemble (EXE) and transition path sampling (TPS) simulations. Free energy profiles have been determined from EXE for DNA sequences of varying composition, chain length, and ionic strength. TPS simulations within a Langevin dynamics formalism have been carried out to obtain further information of the transition state for renaturation. Simulation results reveal that free energy profiles are strikingly similar for the various DNA sequences considered in this work. Taking intact double-stranded DNA to have an extent of reaction ξ = 1.0, the maximum of the free energy profile appears at ξ≈0.15, corresponding to ∼2 base pairs. In terms of chain length, the free energy barrier of longer oligonucleotides (30 versus 15 base pairs) is higher and slightly narrower, due to increased sharpness associated with the transition. Low ionic strength tends to decrease free energy barriers, whereby increasing strand rigidity facilitates reassociation. Two mechanisms for DNA reassociation emerge from our analysis of the transition state ensemble. Repetitive sequences tend to reassociate through a non-specific pathway involving molecular slithering. In contrast, random sequences associate through a more restrictive pathway involving the formation of specific contacts, which then leads to overall molecular zippering. In both random and repetitive sequences, the distribution of contacts suggests that nucleation is favored for sites located within the middle region of the chain. The prevalent extent of reaction for the transition state is ξ≈0.25, and the critical size of the nucleus as obtained from our analysis involves ∼4 base pairs.